Charge carrier transport in field-effect transistors with two-dimensional electron gas channels studied using geometrical magnetoresistance effect
Doktorsavhandling, 2022
The angular dependencies of output characteristics of the InGaAs/InP HEMTs oriented in a magnetic field (B) up to 14 T at 2 K were investigated. A strong angular dependence as a function of the B-field was identified. It was shown that the gMR effect governs the observed performance of the HEMTs, and the measured dependencies were accurately described by gMR theory. Additionally, the carrier velocity in InGaAs/InP HEMTs was studied using the gMR effect in the wide range of the drain fields at a cryogenic temperature of 2 K. The velocity peak was observed experimentally for the first time, and it was found that the peak velocity and corresponding field decreased significantly with the transverse field. The relevant scattering mechanisms were analyzed, and it was further demonstrated, that the low-field mobility and peak velocity reveal opposite dependencies on the transverse electric field, indicating the difference in carrier transport mechanisms dominating at low and high electric fields.
It was demonstrated, that the mobility in the GFETs can be directly characterized and analyzed using the gMR and that the method is free from the limitations of other commonly used approaches requiring an assumption of constant mobility and knowledge of the gate capacitance. This allowed for interpretation of the measured dependencies of mobility on the gate voltage, i.e., carrier concentration, and identifying the corresponding scattering mechanisms. The charge carrier transport in the GFETs, characterized using the gMR method in combination with the drain-source resistance model, was also studied by applying a model of the quasi-ballistic charge carrier transport and transfer formalism. The charge carrier mean free path was found to be in the range of 374-390 nm. GFETs with a gate length of 2 μm were shown to have ≈ 20 % of the charge carriers moving ballistically, while at the gate length of 0.2 μm this number increases to above 60 %.
low-field mobility
high-electron-mobility transistor
velocity saturation
quasi-ballistic charge carrier transport
two-dimensional electron gas
charge carrier scattering mechanisms
geometrical magnetoresistance
low noise and high frequency applications
velocity peak
graphene field-effect transistor
charge carrier trans- port
Författare
Isabel Harrysson Rodrigues
Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik
On the angular dependence of InP high electron mobility transistors for cryogenic low noise amplifiers in a magnetic field
AIP Advances,;Vol. 9(2019)
Artikel i vetenskaplig tidskrift
Low-field mobility and high-field velocity of charge carriers in InGaAs/InP high-electron-mobility transistors
IEEE Transactions on Electron Devices,;Vol. 69(2022)p. 1786-1791
Artikel i vetenskaplig tidskrift
Geometrical magnetoresistance effect and mobility in graphene field-effect transistors
Applied Physics Letters,;Vol. 121(2022)
Artikel i vetenskaplig tidskrift
Mobility and quasi-ballistic charge carrier transport in graphene field-effect transistors
Journal of Applied Physics,;Vol. 132(2022)p. 244303-1-244303-9
Artikel i vetenskaplig tidskrift
I vissa elektriska apparater används även magnetfält, t.ex. vid magnetröntgen på sjukhus. Magnetfält kan påverka elektriska signaler negativt genom att hindra elektroner att färdas som de ska. Det är därför viktigt att undersöka hur en transistor påverkas av magnetfält. Ett magnetfält kan även användas som verktyg till att ta fram olika materialegenskaper. Man jämför då hur elektroner beter sig i och utanför magnetfältet. Avhandlingen handlar om hur elektroner färdas i en transistor och hur ett magnetfält påverkar dem.
Två transistortyper har tillverkats och undersökts. Den ena typen, indiumfosfid-baserad, är väletablerad i industrin, men det finns väldigt lite kunskap om hur dessa transistorer påverkas av magnetfält. Den andra typen är baserad på materialet grafen – världen tunnaste och snabbaste material. Grafen är även miljömässigt hållbart och uppvisar stor potential för framtiden.
Infrastruktur
Kollberglaboratoriet
Nanotekniklaboratoriet
Styrkeområden
Nanovetenskap och nanoteknik
Materialvetenskap
Ämneskategorier
Fysik
Nanoteknik
Den kondenserade materiens fysik
ISBN
978-91-7905-728-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5194
Utgivare
Chalmers
Kollektorn, lecture room, Kemivägen 9, MC2-huset, Göteborg
Opponent: Prof. Peter Bøggild, Department of Physics, Technical University of Denmark