A Holistic Take on Simulating Battery Electrolytes
Doktorsavhandling, 2023

As powering a sustainable future is a global goal, interest in battery research and technology is at an all-time high. In order to enable a transition to green-tech, many industries, such as the automotive industry, urge for batteries with higher power and energy densities, longer life-times, and that are safer. All these properties are fundamentally limited by the materials employed. Hence humanity’s ability to create new energy storage materials need to improve.

The way energy storage materials have been developed up until now have mainly been in the lab. With many other industries benefiting from IT tools the battery industry is seeing a need for new better computational tools to aid in developing new materials. Many put their faith in machine learning algorithms to provide the solution, but those methods are not flawless, and are especially hard to work with when modeling electrolytes. This thesis focuses on physics-based methods to model battery electrolytes, such as DFT, AIMD, and classical MD, and makes a holistic retake on how these methods could be used in unison to better help material developers screen their materials.

Novel electrolyte concepts such as highly concentrated electrolytes and localized highly concentrated electrolytes, both for lithium and calcium batteries, are studied using the aforementioned tools. This thesis also presents how the newly developed CHAMPION software and methods can be used to tie the dierent methods together and possibly also extend their use by mapping forces on identified interatomic interactions, which may enable much faster turn-around in the simulation protocols.

machine learning

lithium-ion batteries

multi-scale modeling

AIMD

MD

electrolytes

DFT

PJ
Opponent: Prof. Rafael Gómez-Bombarelli, Massachusetts Institute of Technology, USA

Författare

Fabian Årén

Chalmers, Fysik, Materialfysik

(Localized) Highly Concentrated Electrolytes for Calcium Batteries

Batteries and Supercaps,;Vol. In Press(2023)

Artikel i vetenskaplig tidskrift

CHAMPION: Chalmers hierarchical atomic, molecular, polymeric and ionic analysis toolkit

Journal of Computational Chemistry,;Vol. 42(2021)p. 1632-1642

Artikel i vetenskaplig tidskrift

Ion Transport Mechanisms via Time-Dependent Local Structure and Dynamics in Highly Concentrated Electrolytes

Journal of the Electrochemical Society,;Vol. 167(2020)

Artikel i vetenskaplig tidskrift

F Årén, R. Andersson, A. Franco, and P. Johansson, “Structure, Dynamics and Ion Transport Mechanisms in Lithium-Ion Battery Electrolytes: Origin and Onset of Highly Concentrated Electrolyte Behavior,”

F. Årén, R. Andersson, and P. Johansson, “Sidestepping the use of molecular dynamics force fields,”

Litiumjonbatterier finns överallt omkring oss, i laptops, mobiltelefoner, klockor, mm. Vi ser också hur flera delar av samhället, till exempel transportsektorn, intresserar sig för batterier och elektrifiering då de önskar ställa om till teknik med lägre utsläpp och mindre miljöpåverkan överlag. För att möjliggöra denna omställning måste även materialen i batterierna bli bättre då dessa ytterst styr batteriernas egenskaper: energidensitet, livslängd, säkerhet, etc.

Hittills har denna materialutveckling främst skett genom ett experimentellt dominerat "trial-and-error" tillvägagångssätt. För att effektivisera det arbetet så föreslår denna avhandling hur man mera effektivt kan använda beräkningsmetoder för att bättre guida utvecklingen av elektrolyter. Detta är extra viktigt då mångaproblem har sitt ursprung i just elektrolyten samt att för nya koncept kan beräkningar ge unik information svår att erhålla med experiment.

Högkoncentrerade elektrolyter

Energimyndigheten (39909-1), 2015-02-01 -- 2019-09-30.

High energy lithium sulphur cells and batteries (HELIS)

Europeiska kommissionen (EU) (EC/H2020/666221), 2015-06-01 -- 2019-05-31.

CAlcium Rechargeable BAttery Technology (CARBAT)

Europeiska kommissionen (EU) (EC/H2020/766617), 2017-10-01 -- 2020-09-30.

Drivkrafter

Hållbar utveckling

Innovation och entreprenörskap

Styrkeområden

Transport

Energi

Materialvetenskap

Ämneskategorier (SSIF 2011)

Fysik

Materialkemi

Farkostteknik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

ISBN

978-91-7905-862-3

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5328

Utgivare

Chalmers

PJ

Opponent: Prof. Rafael Gómez-Bombarelli, Massachusetts Institute of Technology, USA

Mer information

Senast uppdaterat

2023-05-22