Collision-Free Trajectory Planning of Mobile Robots by Integrating Deep Reinforcement Learning and Model Predictive Control
Paper i proceeding, 2023

In this paper, we present an efficient approach to real-time collision-free navigation for mobile robots. By integrating deep reinforcement learning with model predictive control, our aim is to achieve both collision avoidance and computational efficiency. The methodology begins with training a preliminary agent using deep Q-learning, enabling it to generate actions for next time steps. Instead of executing these actions, a reference trajectory is generated based on them, which avoids obstacles present on the original reference path. Subsequently, this local trajectory is employed within an MPC trajectory-tracking framework to provide collision-free guidance for the mobile robot. Experimental results demonstrate that the proposed DQN-MPC hybrid approach outperforms pure MPC in terms of time efficiency and solution quality.

Författare

Ze Zhang

Chalmers, Elektroteknik, System- och reglerteknik

Yao Cai

Chalmers, Elektroteknik, System- och reglerteknik

Kristian Ceder

Chalmers, Elektroteknik, System- och reglerteknik

Arvid Enliden

Student vid Chalmers

Ossian Eriksson

Student vid Chalmers

Soleil Kylander

Student vid Chalmers

Rajath Sridhara

Student vid Chalmers

Knut Åkesson

Chalmers, Elektroteknik, System- och reglerteknik

IEEE International Conference on Automation Science and Engineering

21618070 (ISSN) 21618089 (eISSN)

Vol. 2023-August
9798350320695 (ISBN)

19th IEEE International Conference on Automation Science and Engineering, CASE 2023
Auckland, New Zealand,

AIHURO-Intelligent människa-robot-samarbete

VINNOVA (2022-03012), 2023-02-01 -- 2026-01-31.

Ämneskategorier (SSIF 2011)

Robotteknik och automation

Reglerteknik

Datavetenskap (datalogi)

DOI

10.1109/CASE56687.2023.10260515

Mer information

Senast uppdaterat

2024-12-10