A machine learning based Bayesian decision support system for efficient navigation of double-ended ferries
Artikel i vetenskaplig tidskrift, 2024

Ships can be operated more efficiently by utilizing intelligent decision support integrated with onboard data collection systems. In this study, a Bayesian optimization-based decision support system, which utilizes ship performance models built by machine learning methods, is proposed to help determine the operational set-points of two engines for double-ended ferries. By optimizing the ferries’ power allocation between the stern and bow engines, the Decision Support System (DSS) will simultaneously attempt to keep the ETA of the ferry fixed under a set of operational constraints using the Bayesian optimization. Its objective is to minimize fuel consumption along individual trips. Based on simulation environment, the DSS can reduce at maximum 40 % fuel consumption with no significant change of the ETA. Final full-scale experiments of a double-ended ferry demonstrated an average of 15 %, where at least half of this saving was achieved by the optimized power allocation between bow and stern engines.

Bayesian optimizationEnergy efficiencyShip navigationMachine learning ship models

Författare

Daniel Vergara

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Martin Alexandersson

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Xiao Lang

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Wengang Mao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Journal of Ocean Engineering and Science

24680133 (eISSN)

Vol. 9 6 605-615

DEMOPS - Maskininlärningsbaserad modellering av hastighetseffekt för att minska bränslekostnader och utsläpp från frakt

Trafikverket, 2020-01-01 -- 2024-12-31.

Lighthouse, 2020-01-01 -- 2022-12-31.

Trafikverket, 2020-01-01 -- 2022-12-31.

Utforska innovativa lösningar för arktisk sjöfart

STINT (Dnr:CH2016-6673), 2017-05-01 -- 2020-06-30.

AI-förbättrade energieffektivitetsåtgärder för optimal fartygsdrift för att minska utsläppen av växthusgaser

VINNOVA (2021-02768), 2021-10-15 -- 2024-06-30.

Styrkeområden

Informations- och kommunikationsteknik

Transport

Energi

Drivkrafter

Hållbar utveckling

Fundament

Grundläggande vetenskaper

Ämneskategorier (SSIF 2011)

Farkostteknik

Marin teknik

DOI

10.1016/j.joes.2023.11.002

Mer information

Senast uppdaterat

2024-11-28