Practical battery state of health estimation using data-driven multi-model fusion
Paper i proceeding, 2023

Due to dynamic vehicle operating conditions, random user behaviors, and cell-to-cell variations, accurately estimating the battery state of health (SoH) is challenging. This paper proposes a data-driven multi-model fusion method for battery capacity estimation under arbitrary usage profiles. Six feasible and mutually excluded scenarios are meticulously categorized to cover all operating conditions. Four machine learning (ML) algorithms are individually trained using time-series data to estimate the current time step battery capacity. Additionally, a prediction model based on the histogram data is adopted from previous work to predict the next step capacity value. Then, a Kalman filter (KF) is applied to fuse all the estimation and prediction results systematically. The developed method has been demonstrated on cells operated under diverse profiles to verify its effectiveness and practicability.

SoH estimation

Machine learning

Battery capacity estimation

Model fusion

Battery management system.

Kalman filter

Författare

Yizhou Zhang

Chalmers, Elektroteknik, System- och reglerteknik

China-Euro Vehicle Technology (CEVT) AB

Torsten Wik

Chalmers, Elektroteknik, System- och reglerteknik

John Bergström

China-Euro Vehicle Technology (CEVT) AB

Changfu Zou

Chalmers, Elektroteknik, System- och reglerteknik

IFAC Proceedings Volumes (IFAC-PapersOnline)

14746670 (ISSN)

Vol. 56 2 3776-3781
9781713872344 (ISBN)

IFAC World Congress 2023
Yokohama, Japan,

Datadriven prediktion av batteriåldring

Energimyndigheten (50187-1), 2020-08-01 -- 2023-07-31.

Ämneskategorier

Transportteknik och logistik

Reglerteknik

Signalbehandling

DOI

10.1016/j.ifacol.2023.10.1305

Mer information

Senast uppdaterat

2024-02-09