Physics-guided metamodel for vertical bending-induced fatigue damage monitoring in container vessels
Artikel i vetenskaplig tidskrift, 2024

This study proposes a novel physics-guided metamodel to predict vertical bending-induced fatigue damage in a 2800TEU container vessel navigating the North Atlantic, based on data from the vessel's hull monitoring system. The metamodel combines two XGBoost-based base learners: a black-box model utilizing ship heave and pitch motion measurements, and a gray-box model using spectral moments from numerical analysis. Predictions from both models are refined through a meta learner Gaussian process regression to enhance accuracy. The metamodel was evaluated against black-box and gray-box models across various training data volumes. The proposed model adapts to varying data volumes, from months to over 2 years, effectively integrating the strengths of both base learners to provide reliable predictions in both seen and unseen scenarios. The model consistently demonstrated superior performance, enhancing fatigue damage accumulation accuracy by up to 35% over traditional machine learning methods. This advancement can aid the maritime industry in effectively monitoring ship fatigue and implementing predictive maintenance strategies, marking a significant step forward in applying data-driven techniques in shipping.

Machine learning

Container vessel

Full-scale measurements

Physics-guided

Metamodel

Fatigue damage

Författare

Xiao Lang

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Mingyang Zhang

Aalto-Yliopisto

Chi Zhang

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Jonas Ringsberg

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Wengang Mao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Ocean Engineering

0029-8018 (ISSN)

Vol. 312 119223

AI-förbättrade energieffektivitetsåtgärder för optimal fartygsdrift för att minska utsläppen av växthusgaser

VINNOVA (2021-02768), 2021-10-15 -- 2024-06-30.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Ämneskategorier

Teknisk mekanik

Sannolikhetsteori och statistik

DOI

10.1016/j.oceaneng.2024.119223

Mer information

Senast uppdaterat

2024-10-02