FORMAL SIEGEL MODULAR FORMS FOR ARITHMETIC SUBGROUPS
Artikel i vetenskaplig tidskrift, 2024

The notion of formal Siegel modular forms for an arithmetic subgroup Γ of the symplectic group of genus n is a generalization of symmetric formal Fourier-Jacobi series. Assuming an upper bound on the affine covering number of the Siegel modular variety associated with Γ, we prove that all formal Siegel modular forms are given by Fourier-Jacobi expansions of classical holomorphic Siegel modular forms. We also show that the required upper bound is always met if 2 ≤ n ≤ 4. As an application we consider the case of the paramodular group of squarefree level and genus 2.

Författare

Jan Hendrik Bruinier

Technische Universität Darmstadt

Martin Raum

Chalmers, Matematiska vetenskaper, Algebra och geometri

Transactions of the American Mathematical Society Series B

23300000 (eISSN)

Vol. 11 1394-1434

Fourierkoefficienter för Siegel-modulära former av blockdiagonalt index

Vetenskapsrådet (VR) (2023-04217), 2024-01-01 -- 2027-12-31.

Real-analytiska ortogonala modulära former som genererande serier

Vetenskapsrådet (VR) (2019-03551), 2020-01-01 -- 2023-12-31.

Ämneskategorier (SSIF 2011)

Algebra och logik

Geometri

DOI

10.1090/btran/216

Mer information

Senast uppdaterat

2024-12-20