Batch SLAM with PMBM Data Association Sampling and Graph-Based Optimization
Artikel i vetenskaplig tidskrift, 2025

Simultaneous localization and mapping (SLAM) methods need to both solve the data association (DA) problem and the joint estimation of the sensor trajectory and the map, conditioned on a DA. In this paper, we propose a novel integrated approach to solve both the DA problem and the batch SLAM problem simultaneously, combining random finite set (RFS) theory and the graph-based SLAM approach. A sampling method based on the Poisson multi-Bernoulli mixture (PMBM) density is designed for dealing with the DA uncertainty, and a graph-based SLAM solver is applied for the conditional SLAM problem. In the end, a post-processing approach is applied to merge SLAM results from different iterations. Using synthetic data, it is demonstrated that the proposed SLAM approach achieves performance close to the posterior Cramér-Rao bound, and outperforms state-of-the-art RFS-based SLAM filters in high clutter and high process noise scenarios.

sampling

RFS

DA

SLAM

Batch processing

graph-based SLAM

PMBM

correlation

Författare

Yu Ge

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Ossi Kaltiokallio

Tampereen Yliopisto

Yuxuan Xia

Shanghai Jiao Tong University

Angel Garcia

Universidad Politecnica de Madrid

Hyowon Kim

Chungnam National University

Jukka Talvitie

Tampereen Yliopisto

M. Valkama

Tampereen Yliopisto

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Lennart Svensson

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

IEEE Transactions on Signal Processing

1053-587X (ISSN) 1941-0476 (eISSN)

Vol. In Press 1-15

Ämneskategorier (SSIF 2025)

Robotik och automation

Datorgrafik och datorseende

Signalbehandling

DOI

10.1109/TSP.2025.3567916

Mer information

Senast uppdaterat

2025-05-20