Deep-learning-enabled online mass spectrometry of the reaction product of a single catalyst nanoparticle
Artikel i vetenskaplig tidskrift, 2025

Extracting weak signals from noise is a generic challenge in experimental science. In catalysis, it manifests itself as the need to quantify chemical reactions on nanoscopic surface areas, such as single nanoparticles or even single atoms. Here, we address this challenge by combining the ability of nanofluidic reactors to focus reaction product from tiny catalyst surfaces towards online mass spectrometric analysis with the high capacity of a constrained denoising auto-encoder to discern weak signals from noise. Using CO oxidation and C2H4 hydrogenation on Pd as model reactions, we demonstrate that the catalyst surface area required for online mass spectrometry can be reduced by ≈ 3 orders of magnitude compared to state of the art, down to a single nanoparticle with 0.0072 ± 0.00086 μm2 surface area. These results advocate deep learning to improve resolution in mass spectrometry in general and for online reaction analysis in single-particle catalysis in particular.

Författare

Henrik Klein Moberg

Chalmers, Fysik, Kemisk fysik

Giuseppe Abbondanza

Chalmers, Fysik, Kemisk fysik

Ievgen Nedrygailov

Göteborgs universitet

David Albinsson

Chalmers, Fysik, Kemisk fysik

Joachim Fritzsche

Chalmers, Fysik, Kemisk fysik

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 16 1 7203

Single Nanoparticle Catalysis, SINCAT

Europeiska kommissionen (EU) (EC/H2020/678941), 2016-01-01 -- 2020-12-31.

Ämneskategorier (SSIF 2025)

Analytisk kemi

Nanoteknisk materialvetenskap

DOI

10.1038/s41467-025-62602-3

PubMed

40764516

Mer information

Senast uppdaterat

2025-08-15