Physics-guided ML to build digital twin for wind-assisted propulsion ships
Poster (konferens), 2025

Wind-assisted propulsion systems (WAPS) (Figure 1) are receiving renewed attention as the shipping industry confronts stricter greenhouse gas (GHG) emission regulations on the pathway toward net-zero emissions by 2050. This project aims to pioneer physics-informed machine learning (PIML)-based WAPS ship modeling1,2 by using key technological enablers, such as physics-informed neural networks (PINNs), and by addressing the following research questions (Figure 2):
1) How can a PIML framework be developed to combine physical principles with real-world sailing data for WAPS ships?
2) How can WAPS devices be controlled to optimize WAPS ship operation?
3) How can onboard crews be trained to operate the new WAPS ships efficiently and safely?

Författare

Xiao Lang

Chalmers, Mekanik och maritima vetenskaper, Strömningslära

Torsten Wik

Chalmers, Elektroteknik, System- och reglerteknik

Scott MacKinnon

Chalmers, Mekanik och maritima vetenskaper, Maritima studier

Wengang Mao

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

2025 AoA Transport All Research Day
Gothenburg, Sweden,

Fysikstyrd ML för att bygga digital tvilling för vindstödda framdrivningsfartyg

Chalmers styrkeområde Transport, 2025-01-01 -- 2026-12-31.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Ämneskategorier (SSIF 2025)

Transportteknik och logistik

Farkost och rymdteknik

Infrastruktur

Chalmers maritima simulatorer

Mer information

Senast uppdaterat

2025-12-11