Jeffrey Steif
Jeffrey Steif’s research area is probability theory and more specifically ergodic theory, percolation and particle systems.
Showing 49 publications
Noise Sensitivity and Stability of Deep Neural Networks for Binary Classification
Where to stand when playing darts?
An Analysis of the Induced Linear Operators Associated to Divide and Color Models
Mixing time for random walk on supercritical dynamical percolation
Divide and color representations for threshold Gaussian and stable vectors
A formula for hidden regular variation behavior for symmetric stable distributions
Generalized Divide and Color models
Quenched exit times for random walk on dynamical percolation
Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?
Cutoff for the noisy voter model
Volatility of Boolean functions
Random walks on dynamical percolation: mixing times, mean squared displacement and hitting times
Strong Noise Sensitivity and Random Graphs
Wald for non-stopping times: The rewards of impatient prophets
Exclusion sensitivity of Boolean functions
Noise sensitivity of Boolean functions and percolation
A crossover for the bad configurations of random walk in random scenery
Exclusion Sensitivity of Boolean Functions
A mini course on percolation theory
Quantitative noise sensitivity and exceptional times for percolation
On the Cluster Size Distribution for Percolation on Some General Graphs
Dynamical sensitivity of the infinite cluster in critical percolation
A Survey of Dynamical Percolation
A survey on dynamical percolation
The critical contact process in a randomly evolving environment dies out
Dynamical models for circle covering: Brownian motion and Poisson updating
Some results for poisoning in a catalytic model
Random walk in random scenery: A survey of some recent results
Refinements of Stochastic Domination
Dynamical Stability of Percolation for Some Interacting Particle Systems and $\epsilon$--Stability
Stochastic Domination: The Contact Process, Ising Models and FKG Measures
Bad configurations for random walk in random scenery and related subshifts
The voter model with anti-voter bonds
Which properties of random sequence are dynamically sensitive?
Propp-Wilson algorithms and finitary codings for high noise Markov random fields
The Ising model on diluted graphs and strong amenability
On the equivalence of certain ergodic properties for Gibbs States
Mixing properties of the generalized T, T -1 -process
Download publication list
You can download this list to your computer.
Filter and download publication list
As logged in user (Chalmers employee) you find more export functions in MyResearch.
You may also import these directly to Zotero or Mendeley by using a browser plugin. These are found herer:
Zotero Connector
Mendeley Web Importer
The service SwePub offers export of contents from Research in other formats, such as Harvard and Oxford in .RIS, BibTex and RefWorks format.
Showing 5 research projects
Interacting Particle Systems, cellular automata, quasilocality and color representations
Stochastics for big data and big systems - bridging local and global
Noise sensitivity, optimal graphs and perturbations of interacting particle systems
Noise sensitivity, phrase transitions and interacting particle systems