Collaborative Approach to Sensor Perception Modelling (SENSI)
Forskningsprojekt, 2025 – 2026

Automated driving systems (ADS) hold potential for safer roads, but their widespread adoption relies on robust and reliable perception systems. This project addresses a lack of open-source,
transparent perception models that accurately reflect the uncertainties of real-world driving scenarios. Currently, virtual safety assessments of ADS often rely on idealized perception models,
neglecting the real-world stochasticity of the environment. Additionally, existing complex, physicsbased perception models are typically not open-source, difficult to set-up, and computationally
expensive for real-time control. This project aims to bridge this gap by developing open-source, transparent, and computationally efficient stochastic perception models with different levels of
modelling complexity. These abstracted models will be applied in two key use cases: 1) The models will be implemented into virtual simulations, enabling more realistic and transparent safety
assessments of ADS. 2) The models will be integrated into the prediction module for optimal, model-based, real-time control in ADS. This will lead to enhanced real-time decision-making and
control capabilities, further contributing to safer and more efficient automated driving.

Deltagare

Jordanka Kovaceva (kontakt)

Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet

Jonas Bärgman

Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet

Chih-Hong Cheng

Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering

Lars Hammarstrand

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Nikolce Murgovski

Chalmers, Elektroteknik, System- och reglerteknik

Ann-Brith Strömberg

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Finansiering

Chalmers

Finansierar Chalmers deltagande under 2025–2026

Relaterade styrkeområden och infrastruktur

Hållbar utveckling

Drivkrafter

Transport

Styrkeområden

Mer information

Senast uppdaterat

2025-02-05