Collaborative Approach to Sensor Perception Modelling (SENSI)
Forskningsprojekt, 2025
– 2026
Automated driving systems (ADS) hold potential for safer roads, but their widespread adoption relies on robust and reliable perception systems. This project addresses a lack of open-source,
transparent perception models that accurately reflect the uncertainties of real-world driving scenarios. Currently, virtual safety assessments of ADS often rely on idealized perception models,
neglecting the real-world stochasticity of the environment. Additionally, existing complex, physicsbased perception models are typically not open-source, difficult to set-up, and computationally
expensive for real-time control. This project aims to bridge this gap by developing open-source, transparent, and computationally efficient stochastic perception models with different levels of
modelling complexity. These abstracted models will be applied in two key use cases: 1) The models will be implemented into virtual simulations, enabling more realistic and transparent safety
assessments of ADS. 2) The models will be integrated into the prediction module for optimal, model-based, real-time control in ADS. This will lead to enhanced real-time decision-making and
control capabilities, further contributing to safer and more efficient automated driving.
Deltagare
Jordanka Kovaceva (kontakt)
Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet
Jonas Bärgman
Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet
Chih-Hong Cheng
Chalmers, Data- och informationsteknik, Interaktionsdesign och Software Engineering
Lars Hammarstrand
Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik
Nikolce Murgovski
Chalmers, Elektroteknik, System- och reglerteknik
Ann-Brith Strömberg
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Finansiering
Chalmers
Finansierar Chalmers deltagande under 2025–2026
Relaterade styrkeområden och infrastruktur
Hållbar utveckling
Drivkrafter
Transport
Styrkeområden