An iterative Newton's method for output-feedback LQR design for large-scale systems with guaranteed convergence
Paper i proceeding, 2019

The paper proposes a novel iterative output-feedback control design procedure, with necessary and sufficient stability conditions, for linear time-invariant systems within the linear quadratic regulator (LQR) framework. The proposed iterative method has a guaranteed convergence from an initial Lyapunov matrix, obtained for any stabilizing state-feedback gain, to a stabilizing output-feedback solution. Another contribution of the proposed method is that it is computationally much more tractable then algorithms in the literature, since it solves only a Lyapunov equation at each iteration step. Therefore, the proposed algorithm succeed in high dimensional problems where other, state-of-the-art methods fails. Finally, numerical examples illustrate the effectiveness of the proposed method.

Linear Quadratic Regulator

Output-feedback

Large-scale systems

Newton's method

optimal controller

Författare

Adrian Ilka

Chalmers, Elektroteknik, System- och reglerteknik

Nikolce Murgovski

Chalmers, Elektroteknik, System- och reglerteknik

Jonas Sjöberg

Chalmers, Elektroteknik, System- och reglerteknik

2019 18th European Control Conference (ECC)

Vol. June 2019 4849-4854 8795752
978-390714400-8 (ISBN)

17th European Control Conference
Naples, Italy,

Robusta styrsystem för integrerad energihantering i fordon

Energimyndigheten (P43322-1), 2016-12-01 -- 2019-12-31.

IMPERIUM - Implementation of powertrain control for economic and clean real driving emission and fuel consumption

Europeiska kommissionen (EU) (EC/H2020/713783), 2016-09-01 -- 2019-08-31.

Ämneskategorier

Beräkningsmatematik

Reglerteknik

Signalbehandling

DOI

10.23919/ECC.2019.8795752

Mer information

Senast uppdaterat

2022-03-02