The role of oxygen vacancies on the vibrational motions of hydride ions in the oxyhydride of barium titanate
Artikel i vetenskaplig tidskrift, 2020

Perovskite-type oxyhydrides, BaTiO3-xHx, represent a novel class of hydride ion conducting materials of interest for several electrochemical applications, but fundamental questions surrounding the defect chemistry and hydride ion transport mechanism remain unclear. Here we report results from powder X-ray diffraction, thermal gravimetric analysis, nuclear magnetic resonance spectroscopy, inelastic neutron scattering (INS), and density functional theory (DFT) simulations on three metal hydride reduced BaTiO3 samples characterized by the simultaneous presence of hydride ions and oxygen vacancies. The INS spectra are characterized by two predominating bands at around 114 (ω⊥) and 128 (ω∥) meV, assigned as fundamental Ti-H vibrational modes perpendicular and parallel to the Ti-H-Ti bond direction, respectively, and four additional, weaker, bands at around 99 (ω1), 110 (ω2), 137 (ω3) and 145 (ω4) meV that originate from a range of different local structures associated with different configurations of the hydride ions and oxygen vacancies in the materials. Crucially, the combined analyses of INS and DFT data confirm the presence of both nearest and next-nearest neighbouring oxygen vacancies to the hydride ions. This supports previous findings from quasielastic neutron scattering experiments, that the hydride ion transport is governed by jump diffusion dynamics between neighbouring and next-nearest neighbouring hydride ion-oxygen vacancy local structures. Furthermore, the investigation of the momentum transfer dependence of the INS spectrum is used to derive the mean square displacement of the hydride ions, which is shown to be in excellent agreement with the calculations. Analysis of the mean square displacement confirms that the hydrogen vibrational motions are localized in nature and only very weakly affected by the dynamics of the surrounding perovskite structure. This insight motivates efforts to identify alternative host lattices that allow for a less localization of the hydride ions as a route to higher hydride ion conductivities.

Författare

Carin Eklöf-Österberg

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi 2

Laura Mazzei

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi 2

Erik Jedvik Granhed

Chalmers, Fysik, Material- och ytteori

Göran Wahnström

Kondenserad materie- och materialteori

Reji Nedumkandathil

Stockholms universitet

Ulrich Häussermann

Stockholms universitet

Aleksander Jaworski

Stockholms universitet

Andrew J. Pell

Stockholms universitet

S. F. Parker

Rutherford Appleton Laboratory

Niina H. Jalarvo

Oak Ridge National Laboratory

Lars Börjesson

Chalmers, Fysik, Kondenserade materiens fysik

Maths Karlsson

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi 2

Journal of Materials Chemistry A

20507488 (ISSN) 20507496 (eISSN)

Vol. 8 13 6360-6371

Proton- och hydridjon-ledning i perovskiter

Energimyndigheten, 2018-01-01 -- 2021-12-31.

Utforskning av vätedynamik i nya perovskitoxyhydridmaterial med neutronspridningstekniker

Vetenskapsrådet (VR), 2015-01-01 -- 2018-12-31.

Protonledning och nanojonik

Energimyndigheten, 2013-01-01 -- 2016-12-31.

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1039/c9ta11912d

Mer information

Senast uppdaterat

2020-04-29