Microwave Performance of ‘Buffer-Free’ GaN-on-SiC High Electron Mobility Transistors
Artikel i vetenskaplig tidskrift, 2020

High performance microwave GaN-on-SiC HEMTs are demonstrated on a heterostructure without a conventional thick doped buffer. The HEMT is fabricated on a high-quality 0.25 μm unintentional doped GaN layer grown directly on a transmorphic epitaxially grown AlN nucleation layer. This approach allows the AlN-nucleation layer to act as a back-barrier, limiting short channel effects and removing buffer leakage. The devices with the `buffer-free' heterostructure show competitive DC and RF characteristics, as benchmarked against the devices made on a commercial Fe-doped epi-wafer. Peak transconductances of 500 mS/mm and a maximum saturated drain current of ~1 A/mm are obtained. An extrinsic f T of 70 GHz and f max of 130 GHz are achieved for transistors with a gate length of 100 nm. Pulsed-IV measurements reveal a lower current slump and a smaller knee walkout. The dynamic IV performance translates to an output power of 4.1 W/mm, as measured with active load-pull at 3 GHz. These devices suggest that the `buffer-free' concept may offer an alternative route for high frequency GaN HEMTs with less electron trapping effects.

GaN

HEMTs

‘buffer-free’ heterostructure.

microwave

Författare

Chen Ding Yuan

SweGaN AB

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik, Mikrovågselektronik

Anna Malmros

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Mattias Thorsell

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik, Mikrovågselektronik

Hans Hjelmgren

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Olof Kordina

SweGaN AB

Jr-Tai Chen

SweGaN AB

Niklas Rorsman

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

IEEE Electron Device Letters

0741-3106 (ISSN)

Vol. 41 828-831 6

Ämneskategorier

Telekommunikation

Nanoteknik

Infrastruktur

Nanotekniklaboratoriet

DOI

10.1109/LED.2020.2988074

Mer information

Skapat

2020-12-18