Long-Term Visual Localization Revisited
Artikel i vetenskaplig tidskrift, 2022

Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing conditions, including day-night changes, as well as weather and seasonal variations, while providing highly accurate six degree-of-freedom (6DOF) camera pose estimates. In this paper, we extend three publicly available datasets containing images captured under a wide variety of viewing conditions, but lacking camera pose information, with ground truth pose information, making evaluation of the impact of various factors on 6DOF camera pose estimation accuracy possible. We also discuss the performance of state-of-the-art localization approaches on these datasets. Additionally, we release around half of the poses for all conditions, and keep the remaining half private as a test set, in the hopes that this will stimulate research on long-term visual localization, learned local image features, and related research areas. Our datasets are available at visuallocalization.net, where we are also hosting a benchmarking server for automatic evaluation of results on the test set. The presented state-of-the-art results are to a large degree based on submissions to our server.

Visualization

Three-dimensional analysis

Solid modelling

relocalization

Visual localization

long-term localization

Cameras

6DOF pose estimation

Robots

benchmark

Trajectory

Benchmark testing

Författare

Carl Toft

Digitala bildsystem och bildanalys

Will Maddern

University of Oxford

Akihiko Torii

Tokyo Institute of Technology

Lars Hammarstrand

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Erik Stenborg

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Daniel Safari

Tokyo Institute of Technology

Danmarks Tekniske Universitet (DTU)

Masatoshi Okutomi

Tokyo Institute of Technology

Marc Pollefeys

Microsoft Corporation

Eidgenössische Technische Hochschule Zürich (ETH)

Josef Sivic

Institut National de Recherche en Informatique et en Automatique (INRIA)

Ceske Vysoke Uceni Technicke v Praze

Tomas Pajdla

Ceske Vysoke Uceni Technicke v Praze

Fredrik Kahl

Digitala bildsystem och bildanalys

Torsten Sattler

Ceske Vysoke Uceni Technicke v Praze

Digitala bildsystem och bildanalys

IEEE Transactions on Pattern Analysis and Machine Intelligence

0162-8828 (ISSN) 19393539 (eISSN)

Vol. 44 4 2074-2088

Semantisk kartering & visuell navigering för smarta robotar

Stiftelsen för Strategisk forskning (SSF) (RIT15-0038), 2016-05-01 -- 2021-06-30.

Integrering av geometri och semantik i datorseende

Vetenskapsrådet (VR) (2016-04445), 2017-01-01 -- 2020-12-31.

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Ämneskategorier (SSIF 2011)

Signalbehandling

Datavetenskap (datalogi)

Datorseende och robotik (autonoma system)

DOI

10.1109/TPAMI.2020.3032010

PubMed

33074802

Mer information

Senast uppdaterat

2022-04-05