Scalable Fabrication of Edge Contacts to 2D Materials: Implications for Quantum Resistance Metrology and 2D Electronics
Artikel i vetenskaplig tidskrift, 2023

We report a reliable and scalable fabrication method for producing electrical contacts to two-dimensional (2D) materials based on the tri-layer resist system. We demonstrate the applicability of this method in devices fabricated on epitaxial graphene on silicon carbide (epigraphene) used as a scalable 2D material platform. For epigraphene, data on nearly 70 contacts result in median values of the one-dimensional (1D) specific contact resistances ρc ∼ 67 Ω·μm and follow the Landauer quantum limit ρc ∼ n-1/2, consistently reaching values ρc < 50 Ω·μm at high carrier densityn. As a proof of concept, we apply the same fabrication method to the transition metal dichalcogenide (TMDC) molybdenum disulfide (MoS2). Our edge contacts enable MoS2 field-effect transistor (FET) behavior with an ON/OFF ratio of >106 at room temperature (>109 at cryogenic temperatures). The fabrication route demonstrated here allows for contact metallization using thermal evaporation and also by sputtering, giving an additional flexibility when designing electrical interfaces, which is key in practical devices and when exploring the electrical properties of emerging materials.

2D material

edge-contacts

graphene

MoS 2

epitaxial graphene

Författare

Naveen Shetty

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Hans He

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

RISE Research Institutes of Sweden

Richa Mitra

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Johanna Huhtasaari

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Konstantina Iordanidou

Chalmers, Fysik, Kondenserad materie- och materialteori

Julia Wiktor

Chalmers, Fysik, Kondenserad materie- och materialteori

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Saroj Prasad Dash

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Rositsa Yakimova

Linköpings universitet

Lunjie Zeng

Chalmers, Fysik, Nano- och biofysik

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Samuel Lara Avila

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

National Physical Laboratory (NPL)

2D-Tech

ACS Applied Nano Materials

25740970 (eISSN)

Vol. 6 7 6292-6298

QUantum Electronics Science and TECHnology training (QuESTech)

Europeiska kommissionen (EU) (EC/H2020/766025), 2018-01-01 -- 2021-12-31.

Kvantkriticitet och ny kvantmateria i tvådimensionella Dirac-material

Vetenskapsrådet (VR) (2021-05252), 2022-01-01 -- 2025-12-31.

Plasmon-exciton coupling at the attosecond-subnanometer scale: Tailoring strong light-matter interactions at room temperature

Knut och Alice Wallenbergs Stiftelse (2019.0140), 2020-07-01 -- 2025-06-30.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

Ämneskategorier

Textil-, gummi- och polymermaterial

Annan materialteknik

Den kondenserade materiens fysik

DOI

10.1021/acsanm.3c00652

Mer information

Senast uppdaterat

2024-03-07