Early prediction of battery life by learning from both time-series and histogram data
Paper i proceeding, 2023
first investigate the prediction performance of using these two feature sources individually, then two methods of systematically combining these two feature sources are devised. Additionally, four machine learning algorithms with different characteristics are applied to compare their performances on battery prognostic problems. We show that the prediction accuracy of using these two feature sources individually is comparable. Moreover, a systematic combination of these two features considerably improves the prediction performance in terms of accuracy and robustness, achieving excellent prediction results with a root mean square error of around 150 cycles using only the first 100 cycle’s data. Finally, experimental data of different cell types and cycling conditions are used to verify the developed method’s effectiveness and generality.
Machine learning Lithium-ion battery Battery life prediction Remaining useful life Battery management system
Författare
Yizhou Zhang
Chalmers, Elektroteknik, System- och reglerteknik
Torsten Wik
Chalmers, Elektroteknik, System- och reglerteknik
Yicun Huang
Chalmers, Elektroteknik, System- och reglerteknik
John Bergström
China-Euro Vehicle Technology (CEVT) AB
Changfu Zou
Chalmers, Elektroteknik, System- och reglerteknik
IFAC Proceedings Volumes (IFAC-PapersOnline)
14746670 (ISSN)
Vol. 56 2 3770-37759781713872344 (ISBN)
Yokohama, Japan,
Datadriven prediktion av batteriåldring
Energimyndigheten (50187-1), 2020-08-01 -- 2023-07-31.
Drivkrafter
Hållbar utveckling
Styrkeområden
Transport
Energi
Ämneskategorier (SSIF 2011)
Elektroteknik och elektronik
Reglerteknik
DOI
10.1016/j.ifacol.2023.10.1547