Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS
Artikel i vetenskaplig tidskrift, 2024

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration. In biphasic systems, where an isotropic phase co-exists with self-assembled liquid crystalline mesophase domains, the onset of mesodomain alignment towards the flow direction can occur at shear rates nearing one decade before a progressive increase in preferential orientation at nanoscale is detected. If physical confinement prevents the full formation of a cholesteric phase, mesoscale orientation occurs in shear rate ranges that correspond to de-structuring at nanoscale. Interestingly, nano- and mesoscale orientations appear to converge only for biphasic suspensions with primary nanoparticles predominantly made up of individual crystallites and in a high-aspect ratio nematic-forming thin-wall nanotube system. The nano-micro orientation propagation is attributed to differences in the elongation and breakage of mesophase domains.

orientation

cellulose nanocrystals

multiscale analysis

combined rheological methods

ForMAX

small-angle x-ray scattering

MAX IV

hyphenated rheology

polarized light imaging

rheology

CoSAXS

Författare

Reza Ghanbari

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Ann Terry

Sylwia Wojno

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Marko Bek

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Kesavan Sekar

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Viney Ghai

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Simona Bianco

Marianne Liebi

Chalmers, Fysik, Materialfysik

Aleksandar Matic

Chalmers, Fysik, Materialfysik

Gunnar Westman

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Tiina Nypelö

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Roland Kádár

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Advanced Science

2198-3844 (ISSN) 21983844 (eISSN)

Advanced rheometry of CNC based systems

Wallenberg Wood Science Center (WWSC), 2019-01-01 -- 2024-12-31.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

VINNOVA (2024-03852), 2023-11-01 -- 2029-12-31.

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

Development of a new rheometer system at MAX IV

Stiftelsen Chalmers tekniska högskola, 2019-03-01 -- 2021-12-31.

Max IV-laboratoriet, 2019-03-01 -- 2021-12-31.

Ämneskategorier

Annan maskinteknik

Annan fysik

Nanoteknik

Annan materialteknik

Den kondenserade materiens fysik

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

DOI

10.1002/advs.202410920

Mer information

Skapat

2024-12-30