Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS
Artikel i vetenskaplig tidskrift, 2025

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration. In biphasic systems, where an isotropic phase co-exists with self-assembled liquid crystalline mesophase domains, the onset of mesodomain alignment towards the flow direction can occur at shear rates nearing one decade before a progressive increase in preferential orientation at nanoscale is detected. If physical confinement prevents the full formation of a cholesteric phase, mesoscale orientation occurs in shear rate ranges that correspond to de-structuring at nanoscale. Interestingly, nano- and mesoscale orientations appear to converge only for biphasic suspensions with primary nanoparticles predominantly made up of individual crystallites and in a high-aspect ratio nematic-forming thin-wall nanotube system. The nano-micro orientation propagation is attributed to differences in the elongation and breakage of mesophase domains.

rheology

ForMAX

multiscale analysis

small-angle x-ray scattering

polarized light imaging

MAX IV

combined rheological methods

CoSAXS

cellulose nanocrystals

hyphenated rheology

orientation

Författare

[Person 04c3a497-3818-48fb-b705-b406634623be not found]

[Person 99f322b1-5ad3-4891-9c50-867cd8daa185 not found]

[Person f8b141f3-2520-4a6a-9ed1-4078bc8bd09a not found]

[Person 4c85d430-945e-4589-a2cc-dcefccaf5e44 not found]

[Person d0feef99-e7e5-4126-b5a1-6d32c5fff599 not found]

[Person eb2334ca-f074-4e0a-88ff-9b960933f62c not found]

[Person 5899f605-2559-4868-998b-15ad5f5b5414 not found]

[Person ce978389-7bec-4019-abe6-29352cd97f11 not found]

[Person 45036bf2-ca44-4385-9c2b-b974b22ccada not found]

[Person 31081e73-2a7c-4f2a-b674-4d31517a53c5 not found]

[Person 0ab76a98-60a0-4ed3-96ab-d0ad28d46046 not found]

[Person ad8fbd3d-e3e1-4a63-a823-29395b97e033 not found]

[Person 103a6ca7-d286-46fd-97f2-14b245f63058 not found]

Advanced Science

2198-3844 (ISSN) 21983844 (eISSN)

Vol. 12 7 2410920

Advanced rheometry of CNC based systems

, 2019-01-01 -- 2024-12-31.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace (2D-tech), 2021-01-01 -- 2024-12-31.

VINNOVA (2024-03852), 2023-11-01 -- 2029-12-31.

Development of a new rheometer system at MAX IV

Stiftelsen Chalmers tekniska högskola, 2019-03-01 -- 2021-12-31.

Max IV-laboratoriet, 2019-03-01 -- 2021-12-31.

Ämneskategorier (SSIF 2011)

Annan maskinteknik

Annan fysik

Nanoteknik

Annan materialteknik

Den kondenserade materiens fysik

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

DOI

10.1002/advs.202410920

Mer information

Senast uppdaterat

2026-01-09