Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS
Artikel i vetenskaplig tidskrift, 2025

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration. In biphasic systems, where an isotropic phase co-exists with self-assembled liquid crystalline mesophase domains, the onset of mesodomain alignment towards the flow direction can occur at shear rates nearing one decade before a progressive increase in preferential orientation at nanoscale is detected. If physical confinement prevents the full formation of a cholesteric phase, mesoscale orientation occurs in shear rate ranges that correspond to de-structuring at nanoscale. Interestingly, nano- and mesoscale orientations appear to converge only for biphasic suspensions with primary nanoparticles predominantly made up of individual crystallites and in a high-aspect ratio nematic-forming thin-wall nanotube system. The nano-micro orientation propagation is attributed to differences in the elongation and breakage of mesophase domains.

ForMAX

rheology

orientation

cellulose nanocrystals

small-angle x-ray scattering

hyphenated rheology

combined rheological methods

multiscale analysis

polarized light imaging

MAX IV

CoSAXS

Författare

Reza Ghanbari

Max IV-laboratoriet

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Ann Terry

Lund Institute of Advanced Neutron and X-ray Science (LINXS)

Max IV-laboratoriet

Sylwia Wojno

Wallenberg Wood Science Center (WWSC)

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Marko Bek

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

LINXS Inst Adv Neutron & Xray Sci

Kesavan Sekar

Wallenberg Wood Science Center (WWSC)

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Kim Nygård

Lund Institute of Advanced Neutron and X-ray Science (LINXS)

Viney Ghai

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Simona Bianco

University of Glasgow

Marianne Liebi

Chalmers, Fysik, Materialfysik

Aleksandar Matic

Chalmers, Fysik, Materialfysik

Gunnar Westman

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Tiina Nypelö

Lund Institute of Advanced Neutron and X-ray Science (LINXS)

Wallenberg Wood Science Center (WWSC)

Roland Kádár

Wallenberg Wood Science Center (WWSC)

Chalmers, Industri- och materialvetenskap, Konstruktionsmaterial

Lund Institute of Advanced Neutron and X-ray Science (LINXS)

Advanced Science

2198-3844 (ISSN) 21983844 (eISSN)

Vol. 12 7 2410920

Advanced rheometry of CNC based systems

Wallenberg Wood Science Center (WWSC), 2019-01-01 -- 2024-12-31.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

VINNOVA (2024-03852), 2023-11-01 -- 2029-12-31.

Development of a new rheometer system at MAX IV

Max IV-laboratoriet, 2019-03-01 -- 2021-12-31.

Stiftelsen Chalmers tekniska högskola, 2019-03-01 -- 2021-12-31.

Ämneskategorier (SSIF 2011)

Annan maskinteknik

Annan fysik

Nanoteknik

Annan materialteknik

Den kondenserade materiens fysik

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

DOI

10.1002/advs.202410920

Mer information

Senast uppdaterat

2025-03-01