Accelerating Plasmonic Hydrogen Sensors for Inert Gas Environments by Transformer-Based Deep Learning
Artikel i vetenskaplig tidskrift, 2025

Rapidly detecting hydrogen leaks is critical for the safe large-scale implementation of hydrogen technologies. However, to date, no technically viable sensor solution exists that meets the corresponding response time targets under technically relevant conditions. Here, we demonstrate how a tailored long short-term transformer ensemble model for accelerated sensing (LEMAS) speeds up the response of an optical plasmonic hydrogen sensor by up to a factor of 40 and eliminates its intrinsic pressure dependence in an environment emulating the inert gas encapsulation of large-scale hydrogen installations by accurately predicting its response value to a hydrogen concentration change before it is physically reached by the sensor hardware. Moreover, LEMAS provides a measure for the uncertainty of the predictions that are pivotal for safety-critical sensor applications. Our results advertise the use of deep learning for the acceleration of sensor response, also beyond the realm of plasmonic hydrogen detection.

nanoparticles

deep learning

hydrogen sensing

neural networks

plasmonic sensing

Författare

Viktor Martvall

Chalmers, Fysik, Kondenserad materie- och materialteori

Henrik Klein Moberg

Chalmers, Fysik, Kemisk fysik

Athanasios Theodoridis

Chalmers, Fysik, Kemisk fysik

David Tomecek

Chalmers, Fysik, Kemisk fysik

Pernilla Ekborg-Tanner

Chalmers, Fysik, Kondenserad materie- och materialteori

Sara Nilsson

Chalmers, Fysik, Kemisk fysik

Giovanni Volpe

Göteborgs universitet

Paul Erhart

Chalmers, Fysik

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

ACS Sensors

23793694 (eISSN)

Vol. In Press

Analys och modelleringstjänst för tekniska material studerad med neutroner

Vetenskapsrådet (VR) (2018-06482), 2018-11-01 -- 2020-12-31.

hAIdrogen safety sensors

VINNOVA (2021-02760), 2021-10-25 -- 2024-10-24.

Fasbeteende och elektroniska egenskaper hos halogenid-perovskiter från simulering på atomskala

Vetenskapsrådet (VR) (2020-04935), 2020-12-01 -- 2024-11-30.

Ämneskategorier (SSIF 2025)

Atom- och molekylfysik och optik

Den kondenserade materiens fysik

Styrkeområden

Nanovetenskap och nanoteknik

Infrastruktur

Chalmers materialanalyslaboratorium

Nanotekniklaboratoriet

Chalmers e-Commons

DOI

10.1021/acssensors.4c02616

Mer information

Senast uppdaterat

2025-01-16