Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects
Artikel i vetenskaplig tidskrift, 2016

For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300: 1 were obtained. The resistivity of this nanomaterial was found to be as low as similar to 10(-8) Omega m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.






Shuangxi Sun

Elektronikmaterial och system

Wei Mu

Elektronikmaterial och system

Michael Edwards

Elektronikmaterial och system

Davide Mencarelli

Universita Politecnica delle Marche

Luca Pierantoni

Universita Politecnica delle Marche

Yifeng Fu

Elektronikmaterial och system

Kjell Jeppson

Elektronikmaterial och system

Johan Liu

Elektronikmaterial och system


0957-4484 (ISSN) 1361-6528 (eISSN)

Vol. 27 Art no335705-