Influence on Noise Performance of GaN HEMTs With In Situ and Low-Pressure-Chemical-Vapor-Deposition SiNx Passivation
Reviewartikel, 2016

High-frequency and low-frequency noise (LFN) performance of GaN high electron-mobility transistors (HEMTs), passivated with SiNx deposited by either in situ or low-pressure-chemical-vapor-deposition (LPCVD), are compared. From 8-26 GHz, the LPCVD sample has a lower minimum noise figure (1 dB at 8 GHz) because of lower power spectral density of noise sources and less transconductance (g(m)) dispersion. The LPCVD and the in situ SiNx passivated HEMTs exhibit similar LFN in the 1 Hz-100 kHz range (drain current noise spectra similar to 10(-17) A(2)/Hz at 100 kHz). Nevertheless, LPCVD should be a preferred choice for voltage-controlled oscillator (VCO) applications, since it is capable of suppressing current collapse more effectively, which results in a higher output power and, therefore, a lower phase noise. Furthermore, the low current collapse, low LFN, and minimum noise figure makes the LPCVD SiNx passivation a promising candidate for multifunctional monolithic microwave integrated circuits, including power amplifiers, low-noise amplifier, switches, mixers, and VCOs.

low-frequency noise (LFN)

AlGaN/GaN high-electron-mobility transistors (HEMTs)

Engineering

oscillator

Physics

hfets

noise figure

Författare

Tongde Huang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Olle Axelsson

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Thi Ngoc Do Thanh

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Mattias Thorsell

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Dan Kuylenstierna

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

Niklas Rorsman

Chalmers, Mikroteknologi och nanovetenskap (MC2), Mikrovågselektronik

IEEE Transactions on Electron Devices

0018-9383 (ISSN)

Vol. 63 10 3887-3892

Ämneskategorier

Elektroteknik och elektronik

Nanoteknik

DOI

10.1109/ted.2016.2597758

Mer information

Senast uppdaterat

2021-06-30