Energy-Optimal Trajectory Planning for Electric Vehicles using Model Predictive Control
Paper i proceeding, 2024

This paper proposes a space-sampled Economic Model Predictive Control (EMPC) approach to jointly minimize total energy consumption of an electric vehicle (EV) and track both longitudinal velocity and path curvature reference trajectories. We consider a single-track vehicle model constrained to the range of accelerations ± 3 m/s2, and energy consumption is modelled explicitly including power losses of electric machines. Simulations with the high-fidelity simulator IPG CarMaker show the trade-off between energy consumption and reference tracking. Namely, results show how longitudinal velocity and acceleration control significantly impact energy consumption, whereas deviating from the path centerline mainly allows better velocity tracking.

Författare

Alexandre Rocha

Student vid Chalmers

Anand Ganesan

Chalmers, Elektroteknik, System- och reglerteknik

Volvo

Derong Yang

Volvo

Nikolce Murgovski

Chalmers, Elektroteknik, System- och reglerteknik

2024 European Control Conference, ECC 2024

1346-1351
9783907144107 (ISBN)

2024 European Control Conference, ECC 2024
Stockholm, Sweden,

Ämneskategorier

Farkostteknik

Energisystem

Robotteknik och automation

Reglerteknik

DOI

10.23919/ECC64448.2024.10590794

Mer information

Senast uppdaterat

2024-08-13