All-2D CVD-grown semiconductor field-effect transistors with van der Waals graphene contacts
Artikel i vetenskaplig tidskrift, 2024

Two-dimensional (2D) semiconductors and van der Waals (vdW) heterostructures with graphene have generated enormous interest for future electronic, optoelectronic, and energy-harvesting applications. The electronic transport properties and correlations of such hybrid devices strongly depend on the quality of the materials via chemical vapor deposition (CVD) process, their interfaces and contact properties. However, detailed electronic transport and correlation properties of the 2D semiconductor field-effect transistor (FET) with vdW graphene contacts for understanding mobility limiting factors and metal-insulator transition properties are not explored. Here, we investigate electronic transport in scalable all-2D CVD-grown molybdenum disulfide (MoS2) FET with graphene contacts. The Fermi level of graphene can be readily tuned by a gate voltage to enable a nearly perfect band alignment and, hence, a reduced and tunable Schottky barrier at the contact with good field-effect channel mobility. Detailed temperature-dependent transport measurements show dominant phonon/impurity scattering as a mobility limiting mechanisms and a gate-and bias-induced metal-insulator transition in different temperature ranges, which is explained in light of the variable-range hopping transport. These studies in such scalable all-2D semiconductor heterostructure FETs will be useful for future electronic and optoelectronic devices for a broad range of applications.

Författare

Anamul Md Hoque

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Antony George

Friedrich-Schiller-Universität Jena

Vasudev Ramachandra

Chalmers, Mikroteknologi och nanovetenskap

Emad Najafidehaghani

Friedrich-Schiller-Universität Jena

Ziyang Gan

Friedrich-Schiller-Universität Jena

Richa Mitra

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Bing Zhao

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

S. Sahoo

Institute of Physics Bhubaneswar

Homi Bhabha National Institute (HBNI)

Maria Abrahamsson

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Qiuhua Liang

Chalmers, Fysik, Kondenserad materie- och materialteori

Julia Wiktor

Chalmers, Fysik, Kondenserad materie- och materialteori

Andrey Turchanin

Friedrich-Schiller-Universität Jena

Sergey Kubatkin

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Samuel Lara Avila

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Saroj Prasad Dash

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

npj 2D Materials and Applications

23977132 (eISSN)

Vol. 8 1 55

Tvådimensionell spintronik minnesteknik

Vetenskapsrådet (VR) (2021-05925), 2021-12-01 -- 2024-11-30.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

Spinntronik med topologiskt kvantmaterial och magnetisk heterostruktur

Vetenskapsrådet (VR) (2021-04821), 2022-01-01 -- 2025-12-31.

2D Heterostructure Non-volatile Spin Memory Technology (2DSPIN-TECH)

Europeiska kommissionen (EU) (EC/HE/101135853), 2023-12-01 -- 2026-11-30.

Topologi och magnetism i nya kvantmaterial

Vetenskapsrådet (VR) (2018-07046), 2020-01-01 -- 2021-12-31.

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Spinntronik med topologiskt kvantmaterial och magnetisk heterostruktur

Vetenskapsrådet (VR) (2021-04821), 2022-01-01 -- 2025-12-31.

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1038/s41699-024-00489-2

Mer information

Senast uppdaterat

2024-10-18