Life cycle assessment of permanent magnet electric traction motors
Artikel i vetenskaplig tidskrift, 2019

Ongoing development of electrified road vehicles entails a risk of conflict between resource issues and the reduction of greenhouse gas emissions. In this study, the environmental impact of the core design and magnet material for three electric vehicle traction motors was explored with life cycle assessment (LCA): two permanent magnet synchronous machines with neodymium-dysprosium-iron-boron or samarium-cobalt magnets, and a permanent magnet-assisted synchronous reluctance machine (PM-assisted SynRM) with strontium-ferrite magnets. These combinations of motor types and magnets, although highly relevant for vehicles, are new subjects for LCA. The study included substantial data compilation, machine design and drive-cycle calculations. All motors handle equal take-off, top speed, and driving conditions. The production (except of magnets) and use phases are modeled for two countries – Sweden and the USA – to exemplify the effects of different electricity supply. Impacts on climate change and human toxicity were found to be most important. Complete manufacturing range within 1.7–2.0 g CO2-eq./km for all options. The PM-assisted SynRM has the highest efficiency and lowest emissions of CO2. Copper production is significant for toxicity impacts and effects on human health, with problematic emissions from mining. Resource depletion results are divergent depending on evaluation method, but a sensitivity analysis proved other results to be robust. Key motor design targets are identified: high energy efficiency, slender housings, compact end-windings, segmented laminates to reduce production scrap, and easy disassembly.

Life cycle assessment (LCA) Magnet Electric motor Neodymium Samarium Ferrite


Anders Nordelöf

Chalmers, Teknikens ekonomi och organisation, Environmental Systems Analysis

Emma Grunditz

Chalmers, Elektroteknik, Elkraftteknik

Sonja Lundmark

Chalmers, Elektroteknik, Elkraftteknik

Anne-Marie Tillman

Chalmers, Teknikens ekonomi och organisation, Environmental Systems Analysis

Mikael C D Alatalo

Chalmers, Elektroteknik, Elkraftteknik

Torbjörn Thiringer

Chalmers, Elektroteknik, Elkraftteknik

Transportation Research Part D: Transport and Environment

1361-9209 (ISSN)

Vol. 67 263-274

Elmaskiner för fordon i en cirkulär ekonomi

Energimyndigheten (44204-1), 2017-03-01 -- 2019-12-31.

Energimyndigheten (44204-1), 2017-03-01 -- 2019-12-31.

Elmaskiner för fordon i en cirkulär ekonomi

Chalmers, 2017-03-01 -- 2020-10-31.

Energimyndigheten (44201-1), 2017-03-01 -- 2020-10-31.


Hållbar utveckling





Annan naturresursteknik



Annan elektroteknik och elektronik



Mer information

Senast uppdaterat