Muhammad Azam Sheikh

Visar 29 publikationer

2023

What are the root causes of material delivery schedule inaccuracy in supply chains?

Patrik Jonsson, Johan Öhlin, Hafez Shurrab et al
International Journal of Operations and Production Management. Vol. 44 (13), p. 34-68
Artikel i vetenskaplig tidskrift
2022

Controlling gene expression with deep generative design of regulatory DNA

Jan Zrimec, Xiaozhi Fu, Muhammad Azam Sheikh et al
Nature Communications. Vol. 13 (1), p. 5099-
Artikel i vetenskaplig tidskrift
2021

Machine learning-based investigation of the cancer protein secretory pathway

Rasool Saghaleyni, Muhammad Azam Sheikh, Pramod Bangalore et al
PLoS Computational Biology. Vol. 17 (4)
Artikel i vetenskaplig tidskrift
2021

A Novel Machine Learning Based Approach for Post-OCR Error Detection

Shafqat Mumtaz Virk, Dana Dannélls, Muhammad Azam Sheikh
International Conference Recent Advances in Natural Language Processing, RANLP, p. 1463-1470
Paper i proceeding
2021

Common Spatial Pattern EEG decomposition for Phantom Limb Pain detection

Eva Lendaro, Ebrahim Balouji, Karen Baca et al
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 726-729
Paper i proceeding
2021

A Deep Learning System for Automatic Extraction of Typological Linguistic Information from Descriptive Grammars

Shafqat Mumtaz Virk, Daniel Foster, Muhammad Azam Sheikh et al
International Conference Recent Advances in Natural Language Processing, RANLP, p. 1480-1489
Paper i proceeding
2021

Artificial intelligence for throughput bottleneck analysis – State-of-the-art and future directions

Mukund Subramaniyan, Anders Skoogh, Jon Bokrantz et al
Journal of Manufacturing Systems. Vol. 60, p. 734-751
Reviewartikel
2021

On Scene Injury Severity Prediction (OSISP) machine learning algorithms for motor vehicle crash occupants in US

Stefan Candefjord, Muhammad Azam Sheikh, Pramod Bangalore et al
Journal of Transport and Health. Vol. 22
Artikel i vetenskaplig tidskrift
2020

Context-Aware Optimal Charging Distribution using Deep Reinforcement Learning

Muddsair Sharif, Charitha Buddhika Heendeniya, Muhammad Azam Sheikh et al
ACM International Conference Proceeding Series, p. 64-68
Paper i proceeding
2020

A generic hierarchical clustering approach for detecting bottlenecks in manufacturing

Mukund Subramaniyan, Anders Skoogh, Muhammad Azam Sheikh et al
Journal of Manufacturing Systems. Vol. 55, p. 143-158
Artikel i vetenskaplig tidskrift
2020

A data-driven approach to diagnosing throughput bottlenecks from a maintenance perspective

Mukund Subramaniyan, Anders Skoogh, Muhammad Azam Sheikh et al
Computers and Industrial Engineering. Vol. 150
Artikel i vetenskaplig tidskrift
2020

Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure

Jan Zrimec, Christoph Sebastian Börlin, Filip Buric et al
Nature Communications. Vol. 11 (1)
Artikel i vetenskaplig tidskrift
2019

Bayesian optimization in ab initio nuclear physics

Andreas Ekström, Christian Forssen, Christos Dimitrakakis et al
Journal of Physics G: Nuclear and Particle Physics. Vol. 46 (9)
Artikel i vetenskaplig tidskrift
2019

A prognostic algorithm to prescribe improvement measures on throughput bottlenecks

Mukund Subramaniyan, Anders Skoogh, Muhammad Azam Sheikh et al
Journal of Manufacturing Systems. Vol. 53, p. 271-281
Artikel i vetenskaplig tidskrift
2019

Exploiting frame semantics and frame-semantic parsing for automatic extraction of typological information from descriptive grammars of natural languages

Shafqat Mumtaz Virk, Muhammad Azam Sheikh, Lars Borin et al
International Conference Recent Advances in Natural Language Processing, RANLP. Vol. 2019-September, p. 1247-1256
Paper i proceeding
2018

Data-driven algorithm for throughput bottleneck analysis of production systems

Mukund Subramaniyan, Anders Skoogh, Hans Salomonsson et al
Production and Manufacturing Research. Vol. 6 (1), p. 225-246
Artikel i vetenskaplig tidskrift
2018

Visualizing and mitigating delivery schedule deficiencies and inaccuracies using big data analytics

Patrik Jonsson, Muhammad Azam Sheikh
Book of abstracts EurOMA 2018, p. 280-
Paper i proceeding
2016

Summarizing online user reviews using bicliques

Muhammad Azam Sheikh, Peter Damaschke, Olof Mogren
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9587, p. 569-579
Paper i proceeding
2014

Strict group testing and the set basis problem

Peter Damaschke, Muhammad Azam Sheikh, Gabor Wiener
Journal of Combinatorial Theory - Series A. Vol. 126 (1), p. 70-91
Artikel i vetenskaplig tidskrift
2013

Two new perspectives on multi-stage group testing

Peter Damaschke, Muhammad Azam Sheikh, Eberhard Triesch
Algorithmica. Vol. 67 (3), p. 324-354
Artikel i vetenskaplig tidskrift
2013

A toolbox for provably optimal multistage strict group testing strategies

Peter Damaschke, Muhammad Azam Sheikh
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7936 LNCS, p. 446-457
Paper i proceeding
2013

Hypothesis-Driven Approaches to Multivariate Analysis of qPCR Data

Anders Bergkvist, Muhammad Azam Sheikh, Peter Damaschke
PCR Technology: Current Innovations, Third Edition, p. 233-243
Kapitel i bok
2012

Randomized group testing both query-optimal and minimal adaptive

Peter Damaschke, Muhammad Azam Sheikh
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7147 LNCS, p. 214-225
Paper i proceeding
2011

Bounds for nonadaptive group tests to estimate the amount of defectives

Peter Damaschke, Muhammad Azam Sheikh
Discrete Mathematics, Algorithms and Applications. Vol. 3 (4), p. 517-536
Artikel i vetenskaplig tidskrift
2010

Bounds for nonadaptive group tests to estimate the amount of defectives

Peter Damaschke, Muhammad Azam Sheikh
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 6509 (PART 2), p. 117-130
Paper i proceeding
2010

Competitive group testing and learning hidden vertex covers with minimum adaptivity

Peter Damaschke, Muhammad Azam Sheikh
Discrete Mathematics, Algorithms and Applications. Vol. 2 (3), p. 291-311
Artikel i vetenskaplig tidskrift
2009

Competitive group testing and learning hidden vertex covers with minimum adaptivity

Peter Damaschke, Muhammad Azam Sheikh
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 5699, p. 84-95
Paper i proceeding

Ladda ner publikationslistor

Du kan ladda ner denna lista till din dator.

Filtrera och ladda ner publikationslista

Som inloggad användare hittar du ytterligare funktioner i MyResearch.

Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:

Zotero Connector
Mendeley Web Importer

Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.

Visar 2 forskningsprojekt

2018–2021

Nya data-drivna lösningar för förbättrad plankvalitet, informationsdelning och planering i fordonsindustrins försörjningskedjor

Patrik Jonsson Supply and Operations Management
Hafez Shurrab Supply and Operations Management
Paulina Myrelid Supply and Operations Management
Muhammad Azam Sheikh CSE Verksamhetsstöd
Robin Hanson Supply and Operations Management
Magnus Kjellberg CSE Verksamhetsstöd
VINNOVA
FFI - Fordonsstrategisk forskning och innovation

7 publikationer finns
2017–2017

The potential of BigData in material supply and information sharing in supply chains

Patrik Jonsson Supply and Operations Management
Gunnar Stefansson Service Management and Logistics
Muhammad Azam Sheikh CSE Verksamhetsstöd
Chalmers

Det kan finnas fler projekt där Muhammad Azam Sheikh medverkar, men du måste vara inloggad som anställd på Chalmers för att kunna se dem.