Yasemin Bekiroglu

Docent vid Reglerteknik

Yasemin Bekiroglu arbetar i forskargruppen Reglerteknik.

Källa: chalmers.se
Image of Yasemin Bekiroglu

Visar 53 publikationer

2024

Grasp Transfer based on Self-Aligning Implicit Representations of Local Surfaces

Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu
Övrigt konferensbidrag
2024

A Unifying Variational Framework for Gaussian Process Motion Planning

Lucas Cosier, Rares Ioardan, Sicelukwanda Zwane et al
Proceedings of Machine Learning Research. Vol. 238
Paper i proceeding
2024

Learning Dynamic Tasks on a Large-scale Soft Robot in a Handful of Trials

Sicelukwanda Zwane, Daniel Cheney, Curtis Johnson et al
IEEE International Conference on Intelligent Robots and Systems
Paper i proceeding
2023

Benchmarking Local Motion Planners for Navigation of Mobile Manipulators

Sevag Tafnakaji, Hadi Hajieghrary, Quentin Teixeira et al
2023 IEEE/SICE International Symposium on System Integration, SII 2023
Paper i proceeding
2023

GraspAda: Deep Grasp Adaptation through Domain Transfer

Yiting Chen, Junnan Jiang, Ruiqi Lei et al
Proceedings - IEEE International Conference on Robotics and Automation. Vol. 2023-May
Paper i proceeding
2023

Enhanced GPIS learning based on local and global focus areas

Zuka Murvanidze, Marc Peter Deisenroth, Yasemin Bekiroglu
Proceedings - IEEE International Conference on Robotics and Automation
Paper i proceeding
2023

Grasp Transfer based on Self-Aligning Implicit Representations of Local Surfaces

Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu
IEEE Robotics and Automation Letters. Vol. 8 (10), p. 6315-6322
Artikel i vetenskaplig tidskrift
2023

Sliding Touch-Based Exploration for Modeling Unknown Object Shape with Multi-Fingered Hands

Yiting Chen, Ahmet Ercan Tekden, Marc Peter Deisenroth et al
IEEE International Conference on Intelligent Robots and Systems, p. 8943-8950
Paper i proceeding
2023

Neural Field Movement Primitives for Joint Modelling of Scenes and Motions

Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu
IEEE International Conference on Intelligent Robots and Systems, p. 3648-3655
Paper i proceeding
2023

Neural Field Movement Primitives for Joint Modelling of Scenes and Motions

Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu
Poster (konferens)
2023

Safe Trajectory Sampling in Model-Based Reinforcement Learning

Sicelukwanda Zwane, Denis Hadjivelichkov, Yicheng Luo et al
IEEE International Conference on Automation Science and Engineering. Vol. 2023-August
Paper i proceeding
2022

Affordance Transfer based on Self-Aligning Implicit Representations of Local Surfaces

Ahmet Ercan Tekden, Marc Peter Deisenroth, Yasemin Bekiroglu
Övrigt konferensbidrag
2022

Bayesian Optimization-based Nonlinear Adaptive PID Controller Design for Robust Mobile Manipulation

Hadi Hajieghrary, Marc Peter Deisenroth, Yasemin Bekiroglu
IEEE International Conference on Automation Science and Engineering. Vol. 2022-August, p. 1009-1016
Paper i proceeding
2022

Simultaneous Tactile Exploration and Grasp Refinement

Cristiana De Farias, Naresh Marturi, Rustam Stolkin et al
Övrigt konferensbidrag
2022

Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects

Cristiana De Farias, Naresh Marturi, Rustam Stolkin et al
Proceedings - IEEE International Conference on Robotics and Automation
Paper i proceeding
2022

Enhanced GPIS Learning Based on Local and Global Focus Areas

Zuka Murvanidze, Marc Peter Deisenroth, Yasemin Bekiroglu
IEEE Robotics and Automation Letters. Vol. 7 (4), p. 11759-11766
Artikel i vetenskaplig tidskrift
2022

DURableVS: Data-efficient Unsupervised Recalibrating Visual Servoing via online learning in a structured generative model

Nishad Gothoskar, Miguelle Lázaro-Gredilla, Yasemin Bekiroglu et al
Proceedings - IEEE International Conference on Robotics and Automation, p. 6674-6680
Paper i proceeding
2022

Bayesian Optimization based Nonlinear Adaptive PID Design for Robust Control of the Joints at Mobile Manipulators

Hadi Hajieghrary, Marc Peter Deisenroth, Yasemin Bekiroglu
IEEE International Conference on Automation Science and Engineering, p. 1009-1016
Paper i proceeding
2021

Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects

Cristiana De Farias, Naresh Marturi, Rustam Stolkin et al
IEEE Robotics and Automation Letters. Vol. 6 (2), p. 3349-3356
Artikel i vetenskaplig tidskrift
2020

Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration

Gabriela Zarzar Gandler, Carl Henrik Ek, Mårten Björkman et al
Robotics and Autonomous Systems. Vol. 126
Artikel i vetenskaplig tidskrift
2020

Benchmarking Protocol for Grasp Planning Algorithms

Yasemin Bekiroglu, Naresh Marturi, Maximo Roa et al
IEEE Robotics and Automation Letters. Vol. 5 (2), p. 315-322
Artikel i vetenskaplig tidskrift
2020

Visual and Tactile 3D Point Cloud Data from Real Robots for Shape Modeling and Completion

Yasemin Bekiroglu, Mårten Björkman, Gabriela Zarzar Gandler et al
Data in Brief. Vol. 30
Artikel i vetenskaplig tidskrift
2019

Dynamic grasp and trajectory planning for moving objects

Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah et al
Autonomous Robots. Vol. 43 (5), p. 1241-1256
Artikel i vetenskaplig tidskrift
2018

Evaluating the Quality of Non-Prehensile Balancing Grasps

Robert Krug, Yasemin Bekiroglu, Danica Kragic et al
2018 IEEE International Conference on Robotics and Automation (ICRA), p. 4215-4215
Paper i proceeding
2018

Shape Modeling based on Sparse Gaussian Process Implicit Surfaces

Gabriela Zarzar Gandler, Carl Henrik Ek, Mårten Björkman et al
Poster (konferens)
2017

Teaching Assembly by Demonstration using Advanced Human Robot Interaction and a Knowledge Integration Framework

Matthias Haage, Grigoris Piperagkas, Christos Papadopoulos et al
Procedia Manufacturing. Vol. 11, p. 164-173
Artikel i vetenskaplig tidskrift
2017

Towards advanced robotic manipulation for nuclear decommissioning

Naresh Marturi, Alireza Rastegarpanah, Vijay Rajasekaran et al
Robots Operating in Hazardous Environments, InTechOpen
Kapitel i bok
2017

Grasp Quality Evaluation Done Right: How Assumed Contact Force Bounds Affect Wrench-Based Quality Metrics

Robert Krug, Yasemin Bekiroglu, Maximo Roa
Proceedings - IEEE International Conference on Robotics and Automation
Paper i proceeding
2017

A Database for Reproducible Manipulation Research: CapriDB - Capture, Print, Innovate

Yasemin Bekiroglu, Florian Pokorny, Karl Pauwels et al
Data in Brief. Vol. 11, p. 491-498
Artikel i vetenskaplig tidskrift
2016

CapriDB - Capture, Print, Innovate: A Low-Cost Pipeline and Database for Reproducible Manipulation Research

Florian Pokorny, Yasemin Bekiroglu, Karl Pauwels et al
Poster (konferens)
2016

Probabilistic Consolidation of Grasp Experience

Yasemin Bekiroglu, Andreas Damianou, Renaud Detry et al
Proceedings - IEEE International Conference on Robotics and Automation, p. 193-200
Paper i proceeding
2016

Towards advanced robotic manipulation for nuclear decommissioning: A pilot study on tele-operation and autonomy

Naresh Marturi, Alireza Rastegarpanah, Chie Takahashi et al
IEEE International Conference on Robotics and Automation for Humanitarian Applications (RAHA)
Paper i proceeding
2016

Hierarchical Fingertip Space: A Unified Framework for Grasp Planning and In-Hand Grasp Adaptation

Kaiyu Hang, Miao Li, Johannes Stork et al
IEEE Transactions on Robotics. Vol. 32 (4), p. 960-972
Artikel i vetenskaplig tidskrift
2016

Analytic Grasp Success Prediction with Tactile Feedback

Robert Krug, Achim Lilienthal, Danica Kragic et al
Proceedings - IEEE International Conference on Robotics and Automation, p. 165-171
Paper i proceeding
2016

Active Exploration Using Gaussian Random Fields and Gaussian Process Implicit Surfaces

Sergio Caccamo, Yasemin Bekiroglu, Carl Henrik Ek et al
IEEE International Conference on Intelligent Robots and Systems, p. 582-589
Paper i proceeding
2015

Learning Predictive State Representation for In-Hand Manipulation

Johannes Stork, Carl Henrik Ek, Yasemin Bekiroglu et al
Proceedings - IEEE International Conference on Robotics and Automation, p. 3207-3214
Paper i proceeding
2014

Hierarchical Fingertip Space for Synthesizing Adaptable Fingertip Grasps

Kaiyu Hang, Miao Li, Johannes Stork et al
Poster (konferens)
2014

Grasp Moduli Spaces and Spherical Harmonics

Florian Pokorny, Yasemin Bekiroglu, Danica Kragic
Proceedings - IEEE International Conference on Robotics and Automation
Paper i proceeding
2014

Grasp Moduli Spaces, Gaussian Processes and Multimodal Sensor Data

Florian Pokorny, Yasemin Bekiroglu, Mårten Björkman et al
Poster (konferens)
2014

Learning of Grasp Adaptation through Experience and Tactile Sensing

Miao Li, Yasemin Bekiroglu, Danica Kragic et al
IEEE/RSJ International Conference on Intelligent Robots and Systems
Paper i proceeding
2014

Learning to Disambiguate Object Hypotheses through Self-Exploration

Mårten Björkman, Yasemin Bekiroglu
IEEE-RAS International Conference on Humanoid Robots, p. 560-565
Paper i proceeding
2014

What's in the Container? Classifying Object Contents from Vision and Touch

Puren Guler, Yasemin Bekiroglu, Xavi Gratal et al
IEEE/RSJ International Conference on Intelligent Robots and Systems, p. 3961-3968
Paper i proceeding
2013

Enhancing Visual Perception of Shape through Tactile Glances

Mårten Björkman, Yasemin Bekiroglu, Virgile Högman et al
IEEE/RSJ International Conference on Intelligent Robots and Systems , p. 3180-3186
Paper i proceeding
2013

Predicting Slippage and Learning Manipulation Affordances through Gaussian Process Regression

Francisco E B Vina, Yasemin Bekiroglu, Christian Smith et al
IEEE-RAS International Conference on Humanoid Robots, p. 462-468
Paper i proceeding
2013

A Probabilistic Framework for Task-Oriented Grasp Stability Assessment

Yasemin Bekiroglu, Dan Song, Lu Wang et al
Proceedings - IEEE International Conference on Robotics and Automation, p. 3040-3047
Paper i proceeding
2012

Grasp Stability from Vision and Touch

Yasemin Bekiroglu, Renaud Detry, Danica Kragic
Poster (konferens)
2012

Learning Task- and Touch-based Grasping

Yasemin Bekiroglu, Dan Song, Lu Wang et al
Poster (konferens)
2011

Assessing grasp stability based on learning and haptic data

Yasemin Bekiroglu, Janne Laaksonen, Jimmy A. Jorgensen et al
IEEE Transactions on Robotics. Vol. 27 (3), p. 616-629
Artikel i vetenskaplig tidskrift
2011

Learning Tactile Characterizations Of Object- And Pose-specific Grasps

Yasemin Bekiroglu, Renaud Detry, Danica Kragic
IEEE/RSJ International Conference on Intelligent Robots and Systems, p. 1554-1560
Paper i proceeding
2011

Integrating Grasp Planning with Online Stability Assessment using Tactile Sensing

Yasemin Bekiroglu, Kai Huebner, Danica Kragic
Proceedings - IEEE International Conference on Robotics and Automation
Paper i proceeding
2011

Joint Observation of Object Pose and Tactile Imprints for Online Grasp Stability Assessment

Yasemin Bekiroglu, Renaud Detry, Danica Kragic
Poster (konferens)
2010

Learning grasp stability with tactile data and HMMs

Yasemin Bekiroglu, Danica Kragic, Ville Kyrki
IEEE International Symposium on Robot and Human Interactive Communication , p. 132-137
Paper i proceeding
2010

Learning grasp stability based on haptic data

Yasemin Bekiroglu, Janne Laaksonen, Jimmy A. Jorgensen et al
Poster (konferens)

Ladda ner publikationslistor

Du kan ladda ner denna lista till din dator.

Filtrera och ladda ner publikationslista

Som inloggad användare hittar du ytterligare funktioner i MyResearch.

Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:

Zotero Connector
Mendeley Web Importer

Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.

Visar 1 forskningsprojekt

2020–

Dexterous robot assistant for everyday physical object manipulation

Yasemin Bekiroglu Reglerteknik
Chalmers AI-forskningscentrum (CHAIR)

Det kan finnas fler projekt där Yasemin Bekiroglu medverkar, men du måste vara inloggad som anställd på Chalmers för att kunna se dem.